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ABSTRACT

This note is a tutorial in matrix manipulation and the normal distribution of
statistics, concepts that are important for deriving and analysing the Kalman
Filter, a basic tool of signal processing. We focus on the proof of the well-known
fact that the sum of two n-dimensional normal probability density functions
is also normal. While this theorem is usually taken for granted in the signal
processing field, proving it provides an insightful excursion into techniques such
as Gaussian integrals and the Matrix Inversion Lemma.
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EXECUTIVE SUMMARY

Much analysis in the field of tracking and signal processing involves many parameters.
One important example is the Kalman Filter, an algorithm that updates the estimated
values of parameters based on their previous estimated values and a set of observations.

Parameters such as these are usually best arranged in a vector for economy of language.
Any linearity inherent in the technique being described can then be expressed using matrix
language. Deriving and analysing the Kalman Filter is one such example of this, so that a
good command of matrix manipulation becomes useful to the field. For example, matrices
and vectors are used to manipulate the normal probability density functions used in the
Kalman Filter.

In this note, we have used some of these techniques to prove the well-known fact that
the sum of two n-dimensional normal density functions is also normal. While this theorem
is usually taken for granted in the signal processing field, proving it is an insightful exercise
in applying some useful matrix techniques, such as Gaussian integrals and the Matrix
Inversion Lemma.
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1 Getting Started: the Proof for

One-Dimensional Variables

Much analysis in the field of tracking and signal processing involves many parameters.
One important example is the Kalman Filter, an algorithm that updates the estimated
values of parameters based on their previous estimated values and a set of observations.

Parameters such as these are usually best arranged in a vector for economy of language.
Any linearity inherent in the technique being described can then be expressed using matrix
language. Deriving and analysing the Kalman Filter is one such example of this, so that a
good command of matrix manipulation becomes useful to the field. For example, matrices
and vectors are used to manipulate the normal probability density functions used in the
Kalman Filter.

In this note, we have used some of these techniques to prove the well-known fact that
the sum of two n-dimensional normal density functions is also normal. While this theorem
is usually taken for granted in the signal processing field, proving it is an insightful exercise
in applying some useful matrix techniques, such as Gaussian integrals and the Matrix
Inversion Lemma.

We begin by stating the theorem to be proved: that the sum of two Gaussian density
functions is another Gaussian function. Its mean is the sum of the individual means,
and its variance (or covariance in the n-dimensional case) is the sum of the individual
variances (or covariances). The proof of this fact uses some techniques and results that
are useful knowledge for anyone undertaking analytical work in the field of tracking. These
techniques and proofs are, in fact, not easy to locate in the literature, and so we present
them here. We have not aimed for any extreme economy in how the process has been
carried out. Rather, the calculation is done from a first-principles point of view, precisely
because of its effectiveness as an exercise in matrix manipulation.

Two results that are needed are given in the appendices. The first is the result of an
n-dimensional integration of a Gaussian function. The second appendix gives a conve-
niently short form of the very useful Matrix Inversion Lemma, from which all other forms
of that lemma can be derived in a straightforward way (as demonstrated by an example
in that appendix).

The sum-of-Gaussians result is first proved here in one dimension, to give a feel for the
approach to be followed in the n-dimensional case. Consider two random variables

x ∼ N (x̄, σ2
x) and y ∼ N (ȳ, σ2

y) , with z ≡ x + y , (1.1)

by which we mean there are two Gaussian functions being considered:

px(x) ≡ 1

σx

√
2π

exp
−(x − x̄)2

2σ2
x

, py(y) ≡ 1

σy

√
2π

exp
−(y − ȳ)2

2σ2
y

. (1.2)

The task is to compute the sum density, p(z). If x, y are independent, then the probabil-
ity p(z) dz that z is found in some interval [z, z + dz] equals the product of the probabil-
ities that x is found in the interval [x, x + dx], and y is found in a corresponding interval
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constrained to ensure that y = z − x:

p(z) dz =

∫

x
px(x)dx py(y)dy

∣

∣

y = z−x
. (1.3)

Here are two different ways to analyse this integral.

First way: change of variables Consider new variables X, z, functions of x, y defined via

x = X , y = z − X . (1.4)

Changing variables in (1.3) gives [1]

p(z) dz =

∫

X
px(X) py(z − X)

∣

∣

∣

∣

∂(x, y)

∂(X, z)

∣

∣

∣

∣

dX dz

=

∫

X
px(X) py(z − X) dX dz , since

∂(x, y)

∂(X, z)
=

∣

∣

∣

∣

1 0
−1 1

∣

∣

∣

∣

= 1 . (1.5)

But X is now just a dummy variable of integration, so change it to x to give the
required expression:

p(z) =

∫

px(x) py(z − x) dx . (1.6)

Second way: graphical viewpoint Alternatively, refer to Fig. 1, the blue region of
which shows the points (x, y) such that y is constrained to an infinitesimal region
around y = z − x, and z lies in [z, z + dz]. The area of the shaded tile is dxdy. But
this area is also dxdz. Thus (1.3) becomes

p(z) dz =

∫

x
px(x) py(z − x) dxdz , (1.7)

in which case

p(z) =

∫

px(x) py(z − x) dx , (1.8)

agreeing with (1.6).

Equation (1.6) is a convolution integral, and relates the technique of convolution to
a summing of random variables. Using it, we are able to construct p(z) given the two
functions in (1.2):

p(z) =
1

σxσy2π

∫

exp

[−(x − x̄)2

2σ2
x

− (z − x − ȳ)2

2σ2
y

]

dx . (1.9)

The brackets of (1.9) expand to

−x2

(

1

2σ2
x

+
1

2σ2
y

)

+ x

(

x̄

σ2
x

+
z − ȳ

σ2
y

)

− x̄2

2σ2
x

− (z − ȳ)2

2σ2
y

, (1.10)

which, being a quadratic in x, allows the integral (1.9) to be done:

p(z) =
1

√
2π

√

σ2
x + σ2

y

exp







(

x̄
σ2

x
+ z−ȳ

σ2
y

)2

2
(

1
σ2

x
+ 1

σ2
y

) − x̄2

2σ2
x

− (z − ȳ)2

2σ2
y






. (1.11)
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x

y

z

z + dz

x x + dx

x
+

y
=

z

x
+

y
=

z
+

dz

Figure 1: A graphical depiction of the change of variables in (1.7)

The brackets of (1.11) simplify considerably. Equation (1.11) can be written more suc-

cinctly by defining σ ≡
√

σ2
x + σ2

y , producing

p(z) =
1

σ
√

2π
exp

−[z − (x̄ + ȳ)]2

2σ2
. (1.12)

But this is a Gaussian function with mean x̄ + ȳ and variance σ2
x + σ2

y . That is,

x + y ∼ N (x̄ + ȳ, σ2
x + σ2

y) , (1.13)

as was required to be proved.

2 The Proof for n-Dimensional Variables

The proof that the sum of two n-dimensional Gaussians gives another Gaussian follows
the same line of reasoning as in the 1-dimensional case, but is more involved owing to the
many matrix manipulations required.

Begin with two n-dimensional Gaussian variables (all vectors are columns in what
follows):

x = [x1 . . . xn]t , y = [y1 . . . yn]t , (2.1)

with

x ∼ N (x̄, Px) and y ∼ N (ȳ, Py) . (2.2)

3
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Their density functions are extensions of (1.2):

px(x) ≡ 1

(2π)n/2 |Px|1/2
exp

−1

2
(x − x̄)tP−1

x (x − x̄) ,

py(y) ≡ 1

(2π)n/2 |Py|1/2
exp

−1

2
(y − ȳ)tP−1

y (y − ȳ) . (2.3)

Define z ≡ x + y. We wish to show that z is normally distributed with mean x̄ + ȳ and
covariance Px + Py.

The proof begins by creating a convolution integral, just as in the 1-dimensional case.
To see how it comes about, consider (for brevity) the case of n = 2 dimensions. Just as
dy = dz in the 1-dimensional case of Fig. 1, so also in the 2-dimensional case we have

p(z) dz1 dz2 = probability that x1 ∈ [x1, x1 + dx1] and x2 ∈ [x2, x2 + dx2]

and y1 ∈ [y1, y1 + dz1] and y2 ∈ [y2, y2 + dz2]

=

∫

x1

∫

x2

px(x1, x2) py(z1 − x1, z2 − x2) dx1 dx2 dz1 dz2 , (2.4)

so that

p(z) =

∫∫

px(x1, x2) py(z1 − x1, z2 − x2) dx1 dx2 . (2.5)

This is seen to extend to n dimensions, in which case the required integral is

p(z) =
1

(2π)n |PxPy|1/2

∫

exp
−1

2

[

(x−x̄)tP−1
x (x−x̄)+(z−x−ȳ)tP−1

y (z−x−ȳ)
]

dx1 . . .dxn.

(2.6)
The integration is over x, so collecting terms in x within the brackets in (2.6) gives

p(z) =
1

(2π)n |PxPy|1/2

∫

exp

[

−xt P
−1
x +P

−1
y

2
x + [x̄tP−1

x + (z − ȳ)tP−1
y ]x

− 1

2
x̄tP−1

x x̄ − 1

2
(z − ȳ)tP−1

y (z − ȳ)

]

dx1 . . .dxn ,

(2.7)

which integrates via (A2) to give

p(z) =
πn/2

(2π)n |PxPy|1/2

∣

∣

∣

∣

P
−1
x +P

−1
y

2

∣

∣

∣

∣

1/2
×

exp

[

1

4

(

x̄tP−1
x + (z − ȳ)tP−1

y

)

(

P
−1
x +P

−1
y

2

)

−1
(

P−1
x x̄ + P−1

y (z − ȳ)
)

− 1

2
x̄tP−1

x x̄ − 1

2
(z − ȳ)tP−1

y (z − ȳ)

]

.

(2.8)

Define a matrix P such that P−1 ≡ P−1
x + P−1

y . In that case

∣

∣

∣

∣

P
−1
x +P

−1
y

2

∣

∣

∣

∣

1/2

=

∣

∣

∣

∣

P−1

2

∣

∣

∣

∣

1/2

=
|P |−1/2

2n/2
, and

(

P
−1
x +P

−1
y

2

)

−1

=

(

P−1

2

)−1

= 2P .

(2.9)

4
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Thus

p(z) =
|P |1/2

(2π)n/2 |PxPy|1/2
expB , (2.10)

where (setting α ≡ z − ȳ)

2B =
(

x̄tP−1
x + αtP−1

y

)

P
(

P−1
x x̄ + P−1

y α
)

− x̄tP−1
x x̄ − αtP−1

y α

= x̄t
(

P−1
x PP−1

x − P−1
x

)

x̄ + 2x̄tP−1
x PP−1

y α + αt
(

P−1
y PP−1

y − P−1
y

)

α . (2.11)

There are three expressions involving P, Px, Py in the last line of (2.11) that need simpli-
fying. This can be done using the Matrix Inversion Lemma, explained in Appendix B.
Hoping to prove that the covariance of z is Px + Py, we will aim to have Px + Py appear
wherever possible.

P−1
x PP−1

x − P−1
x

(B4) −(Px + Py)
−1 ,

P−1
x PP−1

y = [Py(P
−1
x + P−1

y )Px]−1 = (Px + Py)
−1 ,

P−1
y PP−1

y − P−1
y = −(Px + Py)

−1 (from two lines up with x ↔ y). (2.12)

Thus

2B = −x̄t(Px + Py)
−1x̄ + 2x̄t(Px + Py)

−1α − αt(Px + Py)
−1α

= −(x̄ − α)t(Px + Py)
−1(x̄ − α)

= −[z − (x̄ + ȳ)]t(Px + Py)
−1[z − (x̄ + ȳ)] . (2.13)

Finally, (2.10) can be written as

p(z) =
1

(2π)n/2 |P−1
x +P−1

y |1/2 |PxPy|1/2
exp

−1

2
[z − (x̄ + ȳ)]t(Px+Py)

−1[z − (x̄ + ȳ)]

=
1

(2π)n/2 |Px+Py|1/2
exp

−1

2
[z − (x̄ + ȳ)]t(Px+Py)

−1[z − (x̄ + ȳ)] . (2.14)

That is, z ∼ N (x̄ + ȳ, Px + Py), as was required to be proved.
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Appendix A Calculating an n-Dimensional

Gaussian Integral

This appendix takes the well-known 1-dimensional result
∫

∞

−∞

e
−ax2+bxdx =

√

π

a
exp

b2

4a
(A1)

and generalises it to the less well-known but very useful n-dimensional result:
∫

∞

−∞

e
−x

tAx+b
t
x dx1 . . .dxn =

πn/2

|A|1/2
exp

1

4
btA−1b , (A2)

where A is a real symmetric n×n matrix, and b, x (and u in what follows) are n-dimensional
column vectors. The “t” superscript denotes the matrix transpose.

First, note that because A is real and symmetric, it can be orthogonally diagonalised
to give A = PA′P t with P−1 = P t and A′ diagonal. Use this P to create a change of
variables to u, via x = Pu. Denote the left-hand side of (A2) by I, which we must show
equals the right-hand side of (A2). The change of variables converts the left-hand side
of (A2) to [1]

I =

∫

∞

−∞

e
−u

tA′
u+b

tPu

∣

∣

∣

∣

∂(x1, . . . , xn)

∂(u1, . . . , un)

∣

∣

∣

∣

du1 . . .dun . (A3)

Since the elements of P are constants, the ijth element of the Jacobian matrix is Pij . Thus
the Jacobian matrix is just P , so that the Jacobian determinant is

∂(x1, . . . , xn)

∂(u1, . . . , un)
= |P | ∈ {±1} , so that

∣

∣

∣

∣

∂(x1, . . . , xn)

∂(u1, . . . , un)

∣

∣

∣

∣

= 1 . (A4)

Now set b′
t ≡ btP , and write I as

I =

∫

∞

−∞

e
−u

tA′
u+b

′t
u du1 . . .dun =

∫

∞

−∞

exp
[

∑

i

−A′

iiu
2
i + b′iui

]

du1 . . .dun

=
∏

i

∫

∞

−∞

exp
[

−A′

iiu
2
i + b′iui

]

du1 . . .dun
(A1) ∏

i

√

π

A′

ii

exp
b′i

2

4A′

ii

. (A5)

But
∏

i A
′

ii = |A′| = |P tAP | = |A|, so

I =
πn/2

|A|1/2
exp

1

4

∑

i

b′i
2

A′

ii

. (A6)

Also

∑

i

b′i
2

A′

ii

= b′
t







1/A′

11 0
. . .

0 1/A′

nn






b′ = b′

t
A′−1

b′ = btPP tA−1PP tb = btA−1b . (A7)

Thus (A6) becomes

I =
πn/2

|A|1/2
exp

1

4
btA−1b , (A8)

which is the right-hand side of (A2). QED.
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Appendix B Matrix Inversion Lemma

The Matrix Inversion Lemma is often used and very powerful in the matrix analysis of
signal processing. It comes in various forms, but they are all easily derived from the
following basic form of the lemma. For any matrices A and B not necessarily square, as
long as the products AB and BA exist and the relevant matrices are invertible,

(I + AB)−1 = I − A(I + BA)−1B , (B1)

where by “I” throughout this appendix we mean the identity matrix of size appropriate
to its use.

The lemma can be proved by multiplying the inverse of the left-hand side of (B1) by
its right-hand side and inspecting the result:

LHS−1 . RHS = (I + AB)
[

I − A(I + BA)−1B
]

= I + AB − A(I + BA)−1B − ABA(I + BA)−1B

= I + A
[

I − (I + BA)−1 − BA(I + BA)−1
]

B

= I + A
[

I − (I + BA)(I + BA)−1
]

B

= I . (B2)

In that case, LHS = RHS, and the lemma is proved.

More complicated versions of the lemma make good use of the fact that (PQ)−1 = Q−1P−1

for any invertible matrices P, Q. For example, apply the lemma to (A + BCD)−1:

(A + BCD)−1 =
[

(I + BCDA−1)A
]

−1

= A−1(I + BCDA−1)−1

(B1)
A−1

(

I − BC[I + DA−1BC]−1DA−1
)

= A−1
(

I − B
[

(I + DA−1BC)C−1
]

−1
DA−1

)

= A−1
(

I − B
[

C−1 + DA−1B
]

−1
DA−1

)

. (B3)

Finally,
(A + BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1 , (B4)

which is a common form of the Matrix Inversion Lemma.
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